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Abstract

Rummy 500 is a classic card game played by at least 2, but up to 8 people. The goal of the
Rummy 500 opponent was to create a machine opponent which used the same mechanisms as a
human to play. This thesis serves to document the process of implementing a heuristic,
rule-based opponent for this game.
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1. Introduction

Rummy 500 is a classic card game that can be played with 2 - 8 people. The main goal is
to score 500 points. It is a game where many heuristics can be applied to increase a player’s
chance at scoring points. The ability to play Rummy 500 using a set of predefined heuristics, or
rules, is the trait which makes it ideal to model an opponent for the game with a symbolic, rule
based AI architecture since all rule based systems contain rules (Davis & King, 21).

The process of implementing Rummy 500 comes down to multiple stages:

1. Modeling the physical components of the game, such as the deck, discard pile,
players’ hands, and players’ melds.

2. Implementing operations to deal cards, deal a card onto the discard pile, and start
the game.

3. Implementing algorithms to pick a card, check the player’s hand for a meld, and
discard a card from the player’s hand.

4. Creating a function for a player to perform a “turn” or the sequence of picking a
card, looking for melds and playing any if found, and discarding a card.

5. Defining a function for a round of Rummy 500 to be played. Where a round ends
when either player runs out of cards or when the deck is empty.

6. Creating a basic game, where cards are drawn only from the deck, melds are sets
of 3 or four cards of the same face value, and discarding is done randomly.

7. Adding heuristics to the simple game.

8. Adding the ability for the opponent to explain its actions.

Once models for the physical components of the game are created, multiple versions of
the game can be made - each with a different set of heuristics used, and each with its own
performance. In order to better understand how the game is making decisions, the AI architecture
is explainable, meaning that an explanation is given for every decision the program makes
(Samek & Müller, 2019).

Explainable AI has been growing in demand since the growth of convolutional neural
networks (ConvNets) began. This is due to the nature of ConvNets not being able to explain what



logic was used to come to a conclusion (Samek & Müller, 2019). Since this implementation of
Rummy 500 does not use a ConvNet, creating a way for every action to be explained was fairly
straightforward. The explanation part of this project was to allow the user to see how the
opponent is behaving when it draws a card, plays melds, or discards.

This thesis serves to document the process implementing the Rummy 500 opponent.
Section 2 gives a background on the construction of card games, noteworthy card playing
programs, the heuristic architecture, and an overview of Rummy 500. Section 3 summarizes the
approach taken to model the opponent. Section 4 describes the knowledge representations
necessary to create the game. Section 5 discusses the game playing framework. Section 6
conveys the results of multiple opponents playing one another. Section 7 gives a summary of the
explainable nature of the program. Finally, Section 8 describes the extensions and elaborations
that could be made if more time was available.

2. Background

The Construction of a Card Game

All card games are created by humans and all card games are played by humans. In these
card games, humans develop heuristics to play the game in a way which maximizes their
payment. The payment is defined as something of value in a game that an individual would want
to possess. In card games, payments may include points, cards, the ability to lose cards, and, in
the case of Poker, money (Von Neuman & Morganstern, 1947).

Considering how humans play games, why not construct a card game centered around the
use of pre-programmed heuristics to play the game? Unless the implementation of the game
happens to be able to learn new heuristics, it will only perform as well as the programmer who
created it. However, depending on the heuristics that were encoded, the machine could still be a
formidable opponent. The reasoning behind using a heuristic architecture in this implementation
of Rummy 500 is for a simple, natural design of a machine opponent, while still being able to
create a worthy opponent.

Classic Card Playing Programs

Game playing programs are created for a variety of reasons. Whether it is to see if it is
possible for a machine to beat a human (Mitchell, 2020), or because elements of the game can
be abstracted to other parts of society (Billings et al., 1998), people have been fascinated with
creating AI games for decades. This of course extends to card games, to the point where many
card playing applications are now available to buy on any app store.



Ginsberg’s Intelligent Bridge Player (GIB) was a bridge playing program created in the
late 1990s. Unlike the other bridge playing programs before it, such as Bridge Baron or Paradise,
GIB does not use any human methodology to play bridge (Ginsberg, 1999). Instead GIB uses a
brute force search to determine the best move in a given situation. To select cards, for example,
GIB uses the Monte Carlo Card Selection Algorithm. This algorithm constructs a deal of the
bridge game thus far, based on what is known and which cards are in play. Any unknown cards
are randomly dealt out if necessary. Every possible move is calculated and then compared to find
the best move on this particular deal. This move is then returned (Ginsberg, 1999). After the
performance of the machine was published in a bridge magazine, GIB was invited to compete in
the world bridge championships in France, where it finished in 12th place out of a possible 34th
against human opponents (Ginsberg, 1999).

The significance of GIB lies in its achievements in performance and its radically different
architecture. Each bridge playing program before GIB used a heuristic architecture to play bridge
while GIB used a mini-max style tree generation algorithm to calculate how to respond to a
certain scenario. Unless there is a significant jump in research for heuristic based bridge
programs, GIB has set a new standard of card game architectures.

Another influential card game program was a Texas Hold’em opponent called Lokibot. It
was created as a way to research how AI should respond to imperfect knowledge, multiple
competing agents, risk management, deception, and unreliable information (Billings et al., 1998).
Other programs before it had created simpler versions of poker to simply have a game that was
playable, but the developers of Lokibot wanted the real-world parts of the game to be included
(Billings et al., 1998). In order to account for this, Lokibot evaluates its hand every time a card is
turned over during gameplay. To evaluate its hand, an enumeration technique is used which
calculates how good its hand is when compared to every other possible hand. A percentile is
calculated for the hand and based on the percentile, the program decides whether to check, bet or
fold. The enumeration is also weighted to account for different opponents’ playing strategies and
also because not all hands are equally likely (Billings et al., 1998). To test out the overall
performance of Lokibot, it played itself. The self play was tournament style and each “opponent”
was a different variation of itself with varying skill level. Overall, the variation with the most
strategies encoded to decide on moves won the most (Billings et al., 1998).

Lokibot’s significance is its approach to hard problems to solve in AI. By taking real
world behaviours that are hard to define in a general context and applying them to a well defined
space such as Texas Hold’em, these problems can be examined more closely. Under this new
light, dealing with imperfect knowledge, unreliable information, multiple competing agents and
more is simply a probability computation. Each one of these behaviours also exists outside of
Poker in the worlds of business and even warfare. What was learned by creating this Texas
Hold’em game could be the basis for the stock trading, weather and political forecasting, and
business transaction applications of tomorrow (Billings et al., 1998).

The Heuristic Architecture

According to Allen Newell and Herbert A. Simon (1957), “A process that may solve a
given problem, but offers no guarantees of doing so, is called a heuristic for that problem.” Based



on this definition, humans tend to be heuristic problem solvers. When a human encounters a
complex problem, rarely is their first thought the most optimal solution to the problem. More
often than not, their first solution is lacking in some way. However, this makes heuristics far from
being useless. Humans tend to think of simple solutions, compared to the exhaustive alternatives.
For example, search algorithms for data structures tend to be heuristic based since the exhaustive
options are more computationally expensive (Kokash, 2005).

When a program is said to be based on rules or conditions, this program can be said to be
based on heuristics since the programmer created a process which may solve a given problem.
The Cyc project, for example, was, “an attempt to model the human consensus knowledge.”
(Yuret, 1996). Cyc used a very large knowledge base to try and accomplish this goal, with a large
team hired to enter knowledge into the database. Cyc proposed to solve the problems of
brittleness in programs by offering the common sense that humans had. Although Cyc did not
accomplish its main goal to be able to derive a deeper meaning from a provided symbol, it
opened up a treasure trove of research possibilities (Yuret, 1996). Flaws in the program created a
demand for new approaches to issues, such as how to model symbols in other ways than
deductive inference (Yuret, 1996).

Another noteworthy program which is based on a heuristic architecture is called Bagger.
This program is designed to find the optimal way to put groceries in bags (Roma et al., 1993).
Bagger does this by grouping all of the items by weight and then packing the items into bags one
at a time starting with the heaviest items and working down to the lightest weight items (Roma et
al., 1993). The significance of using heuristics here is the amount of computation time saved
compared to other methods. An exhaustive method would try every possible combination of
grocery items in bags, and keep track of the results. Once all the possible combinations of
groceries are found, the best option is returned. The exhaustive method is much more expensive
to compute than the heuristic approach due to the excess number of steps needed to compute it.

Heuristic architectures are not the perfect solution to any problem, but they are also not
the worst solution. The goal of a heuristic architecture is to write a program which solves a
problem the way humans do. Heuristic approaches to problems often lead to the most optimal
solution as heuristics are improved and swapped for better heuristics. If any process that may
solve a given problem is a heuristic, then all processes thought of by humans are heuristics.

Rummy 500

The rules for this implementation of Rummy 500 are based on those described in the
Wikipedia 500 Rum article (2005). Rummy 500 is a classic card game played by 2 – 8 people. In
a game with just two people, each person is dealt 13 cards to start. On each person’s turn, they
start by picking a card from either the deck or the discard pile. When drawing from the discard
pile, the player is  allowed to draw multiple cards. In order to legally draw from the discard pile,
a person must be able to use at least one of the cards drawn. At this point, the person will look
for a meld, or combination of cards, to play on the board to earn points. A legal meld in Rummy
consists of at least three cards. The first type of meld is having three cards of the same face value
(i.e. three kings). The second type of meld is a run of cards in increasing order of the same suit
(i.e. 2, 3, 4 of hearts). Once a player has either produced a meld, played on another opponent’s



meld, or realizes he/she can not make a meld, they put a card in the discard pile and their turn is
over.

Rummy 500 is split into multiple rounds. A round starts once cards are dealt and ends
when a player runs out of cards. At the end of each round, points are calculated based on the
melds each person played. Point values for each card in a meld are as follows: cards 2 – 10 are
worth 5 points; jacks, queens, and kings are worth 10 points; and Aces are worth either 5 points
if played low, or 15 points if played high. A player’s score is the points from their melds minus
the sum of the cards left in their hand. Once a player reaches 500 points, the game is over and
that player has one the game.

3. Approach

When asked the question, “What ways are there to implement a machine opponent for a
game?” There are many answers. To determine which one to use, generally another question has
to be asked: “how do you want the opponent to play?”

If the goal was to make an opponent which would always make an ideal move, one might
base the architecture around generating every possible move for a given game state. All moves
that can be made during gameplay form a tree, where gamestates are nodes and possible moves
are links to other gamestates (Aziem et al., 2014). Searching this tree for the most optimal move
can be done by any search algorithm, but is commonly done by the minimax algorithm with
alpha-beta pruning. To begin, imagine two players, one called Max and the other called Min. Min
is trying to score the least number of points possible, while Max is trying to score the most points
possible. The minimax algorithm works by using a depth first approach to visit all nodes up to a
certain depth of the game tree. At each node, the gamestate is evaluated. The moves linking
gamestates together are then given scores based on how well the move benefits Max (Marsland,
1986). Moves that benefit Min will be scored low and moves that benefit Max will be scored
high. Depending on the size of the game tree, this algorithm can get expensive. To accommodate,
alpha-beta pruning is used to eliminate certain nodes and/or branches which are less beneficial to
a player than a previously found move (Marsland, 1986). A variant of this algorithm was used in
the Deep Blue Chess Playing Machine, created by IBM (Campbell et al., 2002). This machine
shocked the world when it beat the world champion Gary Kasparov in 1997 (Campbell et al.,
2002).

Although an opponent which generates a game tree will theoretically make the best move
possible in any situation, it has its limitations. First, it only works for games where most
knowledge is known. In chess for example, the only knowledge not known at any point of the
game is what move a player will make (Billings et al., 1998). Which pieces are on the board, and
their respective locations, are known at all times. In other games such as poker, many factors are
unknown during gameplay. These include, which players have which cards, what a player will
bet during a round, and how strong your hand is compared to everyone else (Billings et al.,
1998). These unknown factors make generating a game tree difficult. Humans do not create a
game tree when they play games. Instead, we have another approach.

Humans are heuristic problem solvers, meaning that for any given problem we use a set
of heuristics to try and solve it (Newell & Simon, 1957). Games inherently present their players



with problems that need to be solved. Which move do you make to benefit the most? What are
my opponents going to do next? For each of these problems, we create heuristics to determine
some kind of answer for ourselves (Newell & Simon, 1957). The Rummy 500 Opponent follows
a set of encoded heuristics to play Rummy 500 like a human would.

The heuristics used by the Rummy 500 Opponent are greedy heuristics. Following the
definition of a greedy algorithm, a greedy heuristic is one which finds the best immediate or local
solution to a problem (Black, 2005). This type of heuristic is mainly used in searching for melds
to play. When a set or run is found, it is played as a meld no matter the point value, or if any
other melds exist in the opponent’s hand. Another type of heuristic is a random selection, which
is where something is selected at random (Stone, 2009). The Rummy 500 Opponent uses a
random heuristic to randomly discard at the end of each turn. Although there are other methods
that could be used to discard, a random selection allows, in theory, for an equal chance of any
card being discarded (Stone, 2009).

A greedy heuristic is not the only type of heuristic which could be used to search for
melds. Another heuristic which could be used is the satisficing heuristic. This heuristic will
continually search a given space until some aspiration value is met (Radner, 1975). A variant of
this which allows for the possibility of an opponent’s hand not containing any melds could be
implemented in the Rummy 500 Opponent. The aspiration value would be a minimum score for
a meld, but would be decreased after a search failed until it reaches 0.

Once an approach for heuristics is established, a way of organizing these heuristics is
now needed. The Rummy 500 Opponent uses a forward-chaining rule base to accomplish this.
Forward-chaining means that a rule is triggered when a change produces a situation which
matches the conditional of a rule (Hayes-Roth, 1985). The “change” for the Rummy 500
Opponent is after either opponent playing takes a turn. On the next turn, the opponent will
examine the cards in its hand and examine any melds that were played to see how the game state
changed. An opponent will then take some action depending on the new state of the game. In
other words, the rule base is a collection of if → then style rules organized by the part of the
Rummy 500 they are relevant to. Rules for drawing a card, searching for and playing melds, and
rules for discarding are organized respectively in their own spaces.

The main approach to implementing the Rummy 500 Opponent was to create a
preliminary version of the opponent, called the base opponent, and then evolve the base opponent
by adding more heuristics. The base opponent could only draw from the deck, play melds that
were sets of three or four cards, and discarded randomly. Before heuristics could be added to the
base opponent, the ability for the base opponent to keep score, take a turn, and play an entire
round against itself was added. The first addition to the base opponent was the ability to play runs
as melds. Next was the ability to continue on pre-laid sets, and then continue pre-laid runs to earn
more points. Each opponent created is called a variant of the Rummy 500 Opponent. Variants are
distinguished from each other based on which heuristics they can use during game play. The
most advanced opponent variant to date plays Rummy 500 in the following manner. First the
Rummy 500 Opponent draws a card from the deck. Next, the opponent looks for any sets in its
hand and plays the first one it finds as a meld. Next, it looks for any runs in its hand to play as
meld. Then, it looks to see if it can play a card on any premade sets and plays the card if
applicable. The opponent then checks to see if it can play a card on any premade runs and plays
the card if possible. Finally the opponent discards randomly onto the discard pile. Games are
played between two opponent variants, where variants may be the same opponent.



4. Knowledge Representations

Representing any game is to represent the components which make up a game. This
includes the physical components and the rules used to play the game. Since the rules depend on
the physical components, the physical components of the game should be modeled first (Aartun,
2016). In the Rummy 500 Opponent, the physical components are the cards, the deck, the discard
pile, and each player’s hand. Since the Rummy 500 Opponent is written in Prolog, the
representations used for each physical component are the data structures available in Prolog.
Figure 1 shows an example of each structure. A card is a Prolog fact consisting of the card’s face
value, suit and rank. Cards have two representations. The first representation is the internal
representation as a Prolog fact.  The Prolog fact representation makes for relatively easy
comparisons of cards based on the suit, rank, and face value. However, this representation is not
very human readable, so another human-readable representation is used for output. The deck,
discard pile, and player’s hands are sets of these cards. The melds played by a player are
represented as a set of sets, where each set is a meld.

Figure 1: Physical Components of Rummy 500

Once the physical components of the game are modeled, the rules must then be
constructed. Every game has rules to define how it is played. However, implementing these rules
programmatically may not be as straightforward as defining rules in the physical world. A rule
generally consists of two sides: a condition which can be met, and an action to be taken if the
condition is found to be true (Hayes-Roth, 1985). The Rummy 500 Opponent described in this
paper uses this type of rule and matches a condition to perform a given action.

Encoding a rule comes down to encoding the condition and encoding the set of actions
associated with the condition. The general structure is shown below in Figure 2, where n is the
number of actions for a given condition. Each action may also consist of another condition to
create an embedded rule (Hayes-Roth, 1985). Each rule is evaluated recursively for this reason.



If Condition1

Action1

Action2

...

Action n

Figure 2: General Condition-Action pair

In the Rummy 500 opponent, this is the structure used to construct rules for every action taken
by the opponent during the course of a game.

When it comes to designing a rule base, there are four basic parts of the architecture:
rules, interpreters, translations and explanations (Hayes-Roth, 1985). The rules, as mentioned
before, are a condition-action pair. The interpreter is the mechanism which matches patterns or
symbols to determine if the condition of the rule has been met. If the condition is true, the
interpreter responds by performing the set of actions associated with the rule. The interpreter
follows the pattern of a recognize-act loop, where a rule is matched, the actions are performed,
and then the rule selection continues as defined (Davis & King, 1984). Shown below in Figure 3
is the general recognize-act loop that is used in each rule evaluation, where N, M, X, and Y are
arbitrary values. The translations are used to rewrite rules for other purposes where the logic may
be the same. A translation is used in the Rummy 500 Opponent to deal one card at the beginning
of the game and for the opponent to draw a card during game play. A translation is used here
because both rules need to take a card off the top of the deck, just in different contexts. Finally
explanations are used to explain how the rule base came to a conclusion (Hayes-Roth, 1985). In
the Rummy 500 Opponent, an explanation is given for every action taken during the course of a
turn.



Figure 3: General recognize-act loop
The Rummy 500 Opponent examines rules based on the natural order of a Rummy 500

turn. Rules to draw a card would be examined first, rules for playing melds are examined second,
and finally rules for discarding are examined at the end of the opponent’s turn. Each section of
the turn follows its own recognize-act loop to match a given rule. For each part of the opponent’s
turn, the rule base is examined in the order that the rules were put into the rule base. As an
example let’s say we are examining the Rummy 500 Opponent variant which can play sets and
runs as melds. The opponent begins by searching its hand for sets first, plays a set if found, and
then searches for runs and plays a run if found. The rules for finding sets are triggered first since
they were encoded first. Rules for finding runs are triggered second since they were encoded
second, and so on.

5. Game Playing Framework

The framework used to play a game can vary from program to program depending on the
type of game and who developed it. Programs like Deep Blue that are designed to play
professional chess players have a game playing framework designed around this. The framework
used in Deep Blue revolves around making the perfect move in chess. Using a parallel search
algorithm, it evaluates up to 330 million possible game states per second, and selects a move
based on how beneficial it is to Deep Blue (Campbell et al., 2002). Other systems, such as
LokiBot, have game playing frameworks designed around testing and gathering results.
LokiBot’s framework allows for its skill level to be adjusted based on how many strategies it is
allowed to use. This allows for multiple different versions of LokiBot to play each other in a
controlled environment to gather accurate results of performance (Billings et al., 1998).

The Rummy 500 Opponent’s game playing framework is similar to LokiBot’s. Like
LokiBot’s game playing framework, the Rummy 500 Opponent is designed to play different
versions of itself, and where each version is differentiated by skill level. Where these two
programs differ is how game play is carried out. In the Rummy 500 Opponent, all game play
revolves around the concept of a turn, where in LokiBot full games of Texas hold ‘em are played
(Billings et al., 1998). A turn in Rummy 500 is defined as a player drawing a card, playing melds
if possible and then discarding a card. Rummy 500 Opponent variants differ based on what each
one is allowed to do on a given turn. Some variants only have the ability to play sets of three to
four cards as melds, while other variants can play sets and runs of any length as melds. Other
variants can play on pre-laid melds along with playing melds from their hand. All variants, from
the most basic to the most complex, draw from the deck and discard randomly. Since these two
parts of a turn are consistent across all opponent variants, constructing an opponent’s turn
follows a general process. First, call the rule which deals a card into the opponent’s hand, then
call the rules to find and play different types of melds specific to this opponent. Finally call the
rule to randomly discard.

Once a turn for a Rummy 500 Opponent variant has been constructed, extensions can be
made. When two opponent variants have the ability to take a turn, the most simple game play that
can happen between them is for each opponent to only take one turn and then stop. From here,



turns can be repeated for a round of Rummy 500 can be played. During the round, two variants
take turns against each other until one opponent runs out of cards or the deck is empty. A score is
then calculated at the end of the round. The final extension is to repeat rounds and add onto
opponent scores until one opponent reaches 500 points. This would be an entire game of Rummy
500 between two opponents.

6. Testing and Results

Testing the performance of the Rummy 500 Opponent was done by having multiple
variants of itself play each other over ten rounds of Rummy 500. For the purposes of this
experiment a “game” will be defined as 10 rounds of Rummy 500. Opponents were matched
based on the goal of having every opponent play every other opponent. Whichever variant won
the most rounds won the game and is assumed to be the better variant overall. Figure 4 shows
the results of the games. Similar to LokiBot’s experiment, the opponent that had the most
encoded heuristics performed the best (Billings et al., 1998).

Figure 4: Rummy 500 Results

Based on the table, a positive correlation exists between the number of heuristics an
opponent can use and their success against other opponents. The most basic opponents, those that
only use sets or only use runs, did not win a game against any other opponent. A mid grade
opponent, one that used both sets and runs only, won 50% of the games it was entered in. Finally
the highest grade opponent, one which plays sets and runs along with playing on pre-laid melds,
won all games against all opponents it was matched with.



7. English Explanations of Decisions

For every action taken by the Rummy 500 Opponent, a short piece of text is printed to the
terminal describing the action. For example, whenever an opponent draws from the deck, a
statement saying where the card was drawn from and the card drawn are printed to the terminal.
An example output of a Rummy 500 round is shown in Figure 5 below. Notice that on top of
every action taken by the Rummy 500 Opponent, every card that the opponent interacts with is
also shown. The reason for these English explanations is to show that the Rummy 500 Opponent
is playing Rummy 500 honestly.

Figure 5: Explanations of Actions

Explainability in AI has been in increasing demand ever since the rise of deep learning
and neural networks began in the early 2010s. The reason behind the demand is because the



architecture of a neural network is a “black box” in a sense (Samek & Müller, 2019). The basic
unit of neural network is called a perceptron. A perceptron takes a series of numerical inputs,
applies some function to them and gives a single numerical output (Mitchell, 2020). These
perceptrons are then connected into a network so that they feed into each other and eventually
give a final output (O’Shea & Nash, 2015). This type of AI is leading the charge in tasks like
image recognition, facial recognition and self driving cars (Mitchell, 2020). However, due to
their complexity, neural networks can not describe the logic used to come to a conclusion. The
lack of explainability can lead to many ethical dilemmas, especially when government agencies
use this type of AI for their tasks.

Imagine this: you are arrested for shoplifting days after a shoplifting incident happened.
The only problem is that you have never been to this store. In the interrogation room you ask the
police why they think it was you. The police claim that their newly installed facial recognition
system matched a face shown in the security footage to your face. Eventually your lawyer
arrives, gives the police evidence that you could not have committed the crime, all charges are
dropped, and you are on your way. This entire event happened because of a mistake made by an
AI system which has no way of explaining how it came to the decision that your face was in the
surveillance video.

Imagine now that you had no alibi. Instead of the charges dropped, this case is taken to
court and based on your resemblance to the person in the security tape and it being possible you
could have committed the crime, you are found guilty and sent to prison. All over a mistake a
computer made trying to recognize someone’s face. The scenario described is becoming more
real everyday. Rekognition, a facial recognition system developed by Amazon, is currently being
marketed to police (Mitchell, 2020). A similar situation happened to Nijeer Parks. He was falsely
arrested for aggravated assault, using a fake ID, unlawful possession of weapons, possession of
marijuana, leaving the scene of a crime, and resisting arrest. He was brought up on all these
charges after a facial recognition system falsely identified him on the photo of a fake ID from the
crime scene. After a year-long battle he was eventually proven innocent (General & Sarlin,
2021).

The neural networks used today must be trained manually by humans, which allows for
bias to be present. In facial recognition, there is bias against people with darker skin tones
(General & Sarlin, 2021). The ACLU demonstrated this in front of congress by testing Amazon’s
Rekognition system on all 535 members of congress, looking for matches in a national database
of people who have been arrested. 28 members were incorrectly matched, with 21% of the errors
occurring on photos of African Americans (Mitchell, 2020). This bias can be present with any
application which uses a neural network. In the medical field there is interest in creating
machines to diagnose patients. Bias could lead to the wrong diagnosis based on the patient’s
information (Samek & Müller, 2019).

The Rummy 500 Opponent does not raise the same ethical concerns as other applications
of AI, but it is still necessary for it to explain all of its actions. Otherwise, how would you know
if the opponent was actually playing by the rules of Rummy 500? Or if it was cheating at the
game? The English explanations of the system were put in place to address these issues.

8. Possible Extensions and Elaborations



The Rummy 500 Opponent variant with the most heuristics currently has the ability to
draw from only the deck, play sets and runs as melds, play on pre-laid melds of both types, and
discard randomly. From here, the opponent can be improved upon.

In Rummy 500 it is legal to draw multiple cards from the discard pile if you can play at
least one of them in a meld on your turn. One of the first additions to make is a heuristic that
would check the discard pile at the start of the opponent’s turn to see if any cards could be used
in a meld. This addition to the program would yield more points, as cards that would normally be
wasted in the discard pile could be used in melds to benefit the opponent.

Another addition which could be made would follow the previous addition to drawing
from the discard pile. If a player can use cards in the discard pile to make melds, without picking
up very many cards, a player would most likely draw from the discard pile on their turn. To
combat this, probabilities could be calculated based on how likely an opponent could use a card
which is to be discarded. This addition to the Rummy 500 Opponent would not help the
opponent score more points, but inhibit the other opponent’s ability to score points.

Finally, an opponent which could learn on its own will eventually behave uniquely. The
Rummy 500 Opponent was designed to use heuristics to play like a human. The key human
aspect that is missing from the opponent is the ability to be unique in how it plays. Humans
develop heuristics by discovering something about the problem they face and then using this
insight to help solve the problem (Romanyc & Pelletier, 1985). By giving the Rummy 500
Opponent this ability, it will behave more like a human. Reinforcement learning would be used to
train the opponent, as humans learn by trial and error (Bianchi et al., 2007). First an evaluation
function to determine how beneficial or damaging a current game state is for the opponent must
be developed. Using the Q-learning algorithm, the current game state would first be evaluated by
the evaluation function. Next, different actions would be simulated to move into another game
state, which would then be evaluated. The penalties and gains of each state transition would be
stored in some manner and from these values, beneficial state transitions would be learned
(Santos et al., 2012). From here, the Rummy 500 Opponent would play many games to learn
which decisions would be beneficial to itself.

9. Conclusion

The Symbolic AI Rummy 500 Opponent uses a rule based heuristic architecture to play
Rummy 500 in a similar manner to a human (Simon & Newell, 1957). The approach to this
project was done in stages, with the first stage being the creation of a simple Rummy 500
Opponent with the most basic heuristics used to play the game. The final and most sophisticated
heuristic has the ability to play any meld. Knowledge was represented by Prolog facts and lists,
as well as condition-action rules to encode the heuristics.

Once multiple heuristics were encoded to play Rummy 500, games to test performance of
different opponents were conducted. These tests showed the strength of each different opponent.
Unsurprisingly, the Rummy 500 Opponent variant with the most encoded heuristics performed
the best. As more heuristics are encoded to create new opponent variants, this may not always be
the case.



Explanations are given for every action taken by the Rummy 500 Opponent in an effort to
make the AI more transparent and seem like less of a “black box” (Samek & Müller , 2019). This
way any user can verify that Rummy 500 Opponent is being played by the rules.

The Rummy 500 Symbolic AI Opponent is still a work in progress. More heuristics can
be added to make the opponent perform better during gameplay. More testing can be done as
more opponent variants are developed. And eventually, this opponent which plays Rummy 500
like a human may finally be tested by playing a human.
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